PORCINE CARDIOMYOCYTE ISOLATION SOLUTIONS COMPOSITION

Adam B. Veteto

IonOptix Protocols
09/30/2019

LIST OF CHEMICALS AND REAGENTS

Chemical	Company	Catalog #
	-	_
Minimum Essential Medium Eagle (MEM)	Sigma	M0518-10X1L
NaHCO3	Sigma	S8875-500G
Pyruvic Acid	Sigma	P-2256
Na-HEPES	Sigma	H7006-500G
HEPES	Sigma	H3375-1KG
Heparin		
Penicillin-Streptomycin (10,000U pen + 10,000mg strep per mL)	Gibco/Invitrogen	15140-122
Albumin from bovine serum (BSA)	Sigma	A6003-100G
Taurine	Sigma	T0625-100G
Liberase TH Research Grade	Roche	54 011 510 001

SOLUTIONS TO PREPARE PRIOR TO DAY OF EXPERIMENTS

Liberase TH Research Grade aliquots

- -Dissolve 50 mg of Liberase TH in 10 mL dH₂O
- -Sit on ice to dissolve for 30 minutes
- -Separate into 1.125 mL aliquots (2.25 mL of 5 mg/mL = 11.25 mg) 2.25 mL will be added to 500 mL enzyme perfusion solution
- -Freeze at -80 until day of experiment

Zero Ca²⁺ PSS Base Solution

Chemical	FW or fluid conc	Amount /2L	final [mM]
NaCl	58.44	16.71 g	143
KCl	74.55	0.7455 g	5
d-Glucose	180	3.6 g	10
HEPES	238.3	4.766 g	10
MgCl_2	1 M sln	2 mL	1

fill to ~2L

stir, pH with NaOH to 7.35, fill to 2L

Store at 4 degrees, make fresh weekly

MEM Base Solutions	MEM	Base	Solutions
---------------------------	------------	------	------------------

Chemical	FW or fluid conc	Amount/L	final [mM]		
MEM	-	11.19 g	1X		
PenStrep sln	10,000 U/mL	5 mL	50,000 U/L		
NaHCO ₃	84.01	0.84 g	10		
Na-Pyruvate	110.04	0.22 g	2		
Na-HEPES	260.29	2.6 g	10		
HEPES	238.3	2.38 g	10		
fill to ~1L stir, pH to 7.35, fill to 1L Filter sterilize with 0.22 µm SteriCups					

Filter sterilize with 0.22 μm SteriCups

Store at 4 degrees, keep sterile, make fresh weekly

DAY-OF SOLUTIONS

PORCINE CARDIOMYOCYTE ISOLATION: LEFT-VENTRICULAR WEDGE PREPARATION

1 | Solution 1: Initial Wash

To 500ml of 0 Ca²⁺ Base Solution, add:

1 ml of heparin (1000 U/ml)

Final concentration of solution:

 $\begin{array}{ccc} \text{NaCl} & 143 \text{ mM} \\ \text{KCl} & 5 \text{ mM} \\ \text{d-Glucose} & 5 \text{ mM} \\ \text{Hepes} & 5 \text{ mM} \\ \text{MgCl}_2 & 1 \text{ mM} \\ \text{Heparin} & 2 \text{ U/mL} \end{array}$

2 | Solution 2: Enzyme Perfusion Solution

To 500 mL MEM Base solution add:

500 mg Taurine (MW 125.1)

100 μl of 0.1 M CaCl₂ solution

1 ml of heparin (10,000U/10ml)

Heat to 37 degrees, just prior to use add 2.25 mL

of Blendzyme TH solution.

Final concentration of solution:

MEM 1X

NaHCO₃ 7 mM Na-Pyruvate 2 mM Sol 1:15 min

Na-HEPES 7 mM Sol 2: 28 min

 $\begin{array}{lll} \text{HEPES} & 7 \text{ mM} \\ \text{CaCl}_2 & 20 \text{ } \mu\text{M} \\ \text{Taurine} & 10 \text{ } \text{mM} \end{array}$

PenStrep 50,000 U/L

Blendzyme TH 0.045 mg/mL

3 Solution 3: BSA Solution

To 200 mL MEM Base solution add:

2 g BSA

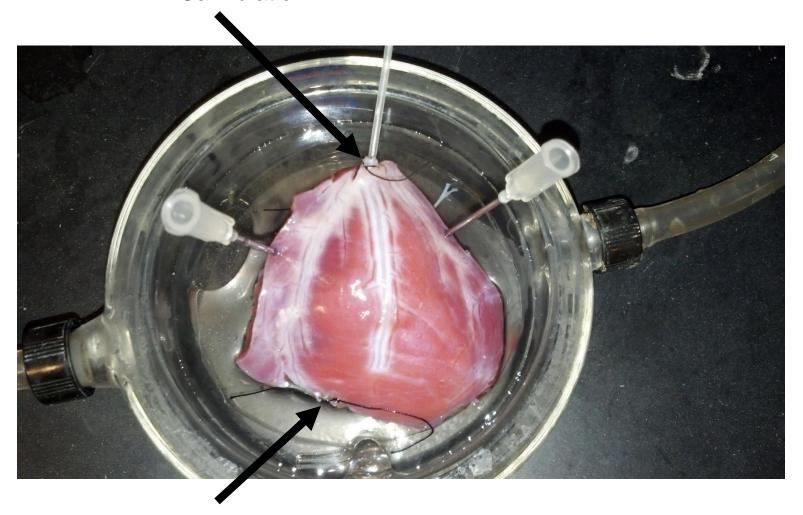
200 µl of 0.1 M CaCl₂ solution.

Final concentration of solution:

 $\begin{array}{ccc} \text{MEM} & 1\text{X} \\ \text{NaHCO}_3 & 10 \text{ mM} \\ \text{Na-Pyruvate} & 2 \text{ mM} \\ \text{Na-HEPES} & 10 \text{ mM} \\ \text{HEPES} & 10 \text{ mM} \\ \text{CaCl}_2 & 50 \text{ <math>\mu\text{M}} \\ \text{PenStrep} & 50,000 \text{ U/L} \\ \text{BSA} & 10 \text{ mg/mL} \\ \end{array}$

4

Solution 4: Final Wash Solution


To 100 mL MEM Base solution add:

125 mg Taurine (MW 125.1) 48 µl of 0.1 M CaCl₂ solution.

Final concentration of solution:

 $\begin{array}{ccc} \text{MEM} & 1\text{X} \\ \text{NaHCO}_3 & 10 \text{ mM} \\ \text{Na-Pyruvate} & 2 \text{ mM} \\ \text{Na-HEPES} & 10 \text{ mM} \\ \text{HEPES} & 10 \text{ mM} \\ \text{CaCl}_2 & 50 \text{ <math>\mu\text{M}} \\ \text{Taurine} & 10 \text{ mM} \\ \text{PenStrep} & 50,000 \text{ U/L} \\ \end{array}$

LAD Cannulation

Coronary ligations

Myocyte Isolation

VENTRICULAR MYOCYTES (MID-MYOCARDIUM):

- At ~30 minutes post digestion, cut through center of LV wedge. If color (orange) and texture (soft but not slimy) of a region is appropriate, cut out 1 inch square section and place in Solution 3. Remove epi and endocardium, and place mid-myocardial region into fresh Solution 3 in a Medium weight boat. Cut into smaller segments with fine scissors. (Note: Sharpness of scissors matters, otherwise you crush cells and live/dead ratio will drop. Also, don't dice tissue, just cut into smaller segments so cells can slough off). Gently shake tissue with forceps for 3 minutes and cells will come off.
 - Filter cells through 200 µm Nylon Filter Mesh into 50 mL Falcon Tube
 - Place Falcon Tube (lid on but open to atmosphere) at ~30 degree angle for 5 minutes, and cells will settle on the bottom/side of tube.
 - Turn tube upright and gently twist tube by hand to release cells from the side, and they will gradually form a soft pellet at the bottom of the tube.
 - Immediately Resuspend pellet in 35 mL *Solution 3*, and check density and quality of cells.
 - Allow cells to settle (30 degrees) and pellet (twist tube) again.
 - Resuspend this pellet in 10-40 mL of *Solution 4*, depending on how dense you want the cells.

Filter through 0.2 mm Nylon mesh into 50 mL Falcon Tube

Example ventricular myocyte pellet